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Condition-based maintenance (CbM) is a useful technique for scheduling maintenance policies aiming to reduce
operating cost, improving the security of management, and ensuring the stable quality of the products. This paper
models the deterioration process of a system composed of multiple components. Each deterioration process is
modelled with the Wiener process. When a linear combination of the processes exceeds a pre-specified threshold,
the age replacement policy will be carried out as the preventive maintenance for the system. Based on these two
replacement policies, the optimized maintenance intervals are then sought. Besides, the paper also develops a cost
process which considers the situation when the maintenance cost is higher than an expectation value, the decision-
maker will prefer to replace the whole system but not repair it. Numerical examples are given to illustrate the
optimisation process.
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1. Introduction
Condition-based maintenance (CbM) is a use-
ful technique for scheduling maintenance policies
aiming to reduce operating cost, improving the
security of management, and ensuring the stable
quality of the products. In the CbM related lit-
erature, stochastic processes such as the gamma
process Lawless and Crowder (2004); Cholette
et al. (2019), the inverse Gaussian process Li et al.
(2017); Hao et al. (2019), and the Wiener process
Wen et al. (2018); Xie et al. (2019); Wang and
Kang (2020) are widely used for different appli-
cations.

Basically, CbM is performed on the equipment
once a parameter(s) related to the condition of the
monitored system reaches a pre-specified value.
Its purpose is to prevent the working efficiency
of the system from reducing to an unacceptable
condition or even if the system stops working
completely, due to the ageing or deterioration of
the system. It is therefore important to assess the
status or remaining useful life of a system, which
can further be used in deciding the future opera-
tion in order to maintain the system at a certain
level of availability.

This paper intends to develop a deteriora-
tion process model, which is suitable for multi-
component systems with multiple failure modes,

and its corresponding maintenance policies. This
can help the company to develop a long-term
maintenance plan to reduce maintenance costs and
increase the effectiveness of a system.

1.1. Related work
Caballé et al. (2015) propose a condition-based
maintenance strategy by combining the non-
homogeneous Poisson process (NHPP) and the
gamma process(GP). It models a multiple deteri-
oration processes within dependent degradation-
threshold-shock model. They also point out that
the dependence analysis between the causes of
failure is a potential development and the variabil-
ity of the threshold should be considered in future.

Zhu et al. (2015) simulate a wear process with
a non-stationary Gamma process and the random
shock damage with a generalized Pareto distri-
bution satisfying Poisson arrivals. It is worth-
while to noticing that this study does not consider
the impact of shocks or inspection costs which
may influence the result of a long-term optimized
maintenance policy.

Liu et al. (2017) propose a new CbM model
based on three-state degradation and the influence
of external environmental shocks. The deteriora-
tion process of the system is modelled by a two-
state Wiener process with a Doubly Stochastic
Poisson Process (DSPP). It considers two different
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thresholds, namely normal threshold and defective
threshold which is depending on the system state.

Zhang et al. (2018) review some developments
and applications of the Wiener process. It also
summarize some challenges and problems which
mainly include: the Wiener process with multi-
ple time-scales, the Wiener process integrating
various types of data, the Wiener process with
state recoveries and the Wiener process with non-
Markovian feature. Change points on degradation
modelling and prognostics are largely occur ran-
domly.

Wu and Castro (2020) investigate a CbM prob-
lem in which the deterioration process of a system
is modelled by a weighted linear combination of
multiple gamma processes for a pavement net-
work. They also point that the degradation may
follow different deterioration processes in one
system. Besides, different failure modes can cor-
respond to different thresholds which is a potential
development as well.

Zhao et al. (2021) propose a multi-criteria mis-
sion abort policy which consider the normal and
defective stages based on the time threshold. It
also indicates that performance of the optimal pol-
icy is compared in detail against several heuristic
policies. Besides, the dynamic risk for controlling
policy is also a possible extension for phased mis-
sion systems.

Liu et al. (2021) propose a condition-based
maintenance model in a finite-time horizon which
consider a system with two heterogeneous de-
pendent components with economic dependence.
Moreover, this research points that the two-unit
system in this paper can be extended to multi-unit
systems by generalizing the degradation process
and Bellman equation, and the maintenance level
can be extended to imperfect repair in future.

1.2. Novelty and contributions
This paper models the deterioration process of a
multi-component system, which is a linear com-
bination of multiple Wiener processes. Specially,
the paper investigates the cost process relating to
the linear combination. Based on the cost process,
it then formulates the expected cost of the life-
cycle for the cases where the age replacement is
applied.

The contribution of this paper includes

• development of a maintenance policy for a sys-
tem whose deterioration process can be mod-
elled by a linear combination of Wiener pro-
cesses; and

• development of a cost process related to the lin-
ear combination of the deterioration processes.

1.3. Overview
The remainder of the paper is structured as fol-
lows. Section 2 lists notations and assumptions.

Section 3 develops a linear combination of Wiener
processes, derives the probability of the first time
to exceed the pre-specified threshold, derives the
cost process relating to the system deterioration
process, and investigates the situation when the
repair cost follows a probability distribution. Sec-
tion 4 derives the maintenance policies base don
the cost process. Section 5 shows some numerical
examples. Section 6 concludes the paper, listed
our findings, and proposes our future work.

2. Assumptions

2.1. Notation
Table 1 shows the notations used in this paper.

k Types of failure modes.
Xk(t) Degradation state of kth failure modes

at time t.
Y (t) Overall degradation of one system at

time t.
μk The drift of kth failure modes.
σk The infinitesimal variance of kth failure

modes.
ak The weight of failure mode k.
μY The drift of the overall degradation of

one system.
σY The infinitesimal variance of the over-

all degradation of one system.
Ta Interval time for the age replacement

policy.
Ci(Ta) Expected cost per unit time for the

age replacement policy for mainte-
nance policy i.

ck PM cost for every unit of kth failure
modes.

cm Expected repair cost
cr Expected replacement cost

Ck(t) Total cost of kth failure modes at t.
U(t) Overall cost of one battery system at

time t.
L The threshold of the degradation level

for a system.
Lc The threshold of the cost for a system.

2.2. Assumption
• The system is new at time t = 0.
• Replacement is carried out every T time units.
• Degradations of different failure modes are

Wiener processes, but have different parame-
ters.

• There are n defects on the system, each defect
develops from time t = 0. When a linear
combination of the magnitudes of the defects
exceeds a pre-specified value, the system needs
replacement.
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• Failure modes are independent from each oth-
ers.

3. Model development

3.1. Deterioration process
We assume that the system has k deterioration
processes, each of which follows a Wiener pro-
cess.

Let Xk(t) be the deterioration level of the kth
deterioration process at time t. Then, Xk(t) have
the following assumptions:

• Xk(0) = 0, which also means that Wk(0) = 0;
• Wk(t) has independent increments that follows

the normal distribution. That is, for 0 <s <t,
Wk(t− s)−Wk(s) follows N (0, (t− s)).

• Wk(t) is continuous in t.

Xk(t) has said having drift coefficient μk and
variance parameter σk

2, the stochastic process of
it is:

Xk(t) = μkt+ σkWk(t), (1)

where μk and σk are the parameters of fail-
ure mode k, respectively, Wk(·) is the standard
Wiener process, which also can be called as the
Brownian motion.

3.1.1. Basic Properties

The unconditional probability density function,
which follows normal distribution with mean = 0
and variance = t, at a fixed time t:

fWt
(x) =

1√
2πt

e−x2/(2t).

We have E[Wk(t)] = 0 and Var[Wk(t)] = t.
These results follow immediately from the def-

inition that increments have a normal distribution,
centred at zero.

Thus, the expected value and the variance of
Xk(t) are given by: E(Xk(t)) = μkt, and
V (Xk(t)) = σk

2t.

3.1.2. A linear combination of Wiener
processes

Now let us assume Y (t) is a linear combination of
n Wiener processes. The overall degradation Y (t)
of the system is represented by

Y (t) =
n∑

k=1

akXk(t), t � 0, ak � 0, (2)

where ak is the weight of failure mode k. Fig. 1
shows the realisation of a linear combination of
two Wiener processes.

Furthermore, the overall deterioration process
Y (t), t > 0 is a stochastic process with the follow-
ing properties (without the skew-normal random
effects):

Fig. 1. Realisation of two deterioration processes and
a linear combination

• Y (0) =
∑n

k=1 akXk(0) = 0,
• ΔY (t) =

∑n
k=1 akΔXk(t) is an independent

increment as well.

Thus, Y (t) would be:

Y (t) = t
n∑

k=1

akμk +

n∑
k=1

akσkWk(t). (3)

Let μY =
∑n

k=1 akμk and σ2
Y =

∑n
k=1 a

2
kσ

2
k.

Then Y (t) follows the normal distribution
N(μY t, σ

2
Y t).

3.1.3. First time to exceed the pre-specified
threshold L

The distribution of the first hitting time of the pro-
cess {Y (t), t ≥ 0}, which starts from Y (0) = 0
should be obtained. The first hitting time ωY (t) is
defined when Y (t) reaches the degradation level
L, according to the statistical characteristic of a
Wiener process, ωY (t) should follow the inverse
Gaussian distribution Ross et al. (1996); Pan et al.
(2017), then

ωL = inf{t > 0 : Y (t) ≥ L}, (4)

Then, the pdf of ωL can be obtained as

fωL
(t) =

L

σY

√
2πt3

exp(
−(L− μY t)

2

2σY
2t

)

=
L

σY

√
πt3

φ(
−(L− μY t)

σY

√
t

), (5)

where φ(·) denotes the standard normal cdf. Then,
the cdf of ωL is obtained by

FωL
(t) = P (Y (t) ≥ L)

= Φ(
−(L− μY t)

σY

√
t

)− exp(
2μY L

σY
2
) (6)



Proceedings of the 31st European Safety and Reliability Conference

where Φ(·) denotes the standard normal cdf.

3.2. Repair cost process
The repair costs of different failure modes are
normally different. Therefore, ck denotes cost of
repairing the kth failure mode. Besides, we con-
sider that the actual cost is dependent on the de-
terioration level of the failure model. It is worth
noticing that, according to Wu and Castro (2020),
the total cost U(t), which is associated to Y (t), is
also a stochastic process and does not have a linear
correlationship with Y (t). As Y(t) is a Wiener
process, U(t) is a Wiener process which is a sum
of Y(t) with a drift.

Thus,

Ck(t) = akckXk(t). (7)

It is worth noticing that, when the cost of each
inspection is considered, then the total repair cost
U(t) can be represented as

U(t) =
n∑

k=1

Ck(t) =
n∑

k=1

akckXk(t), (8)

U(t) is a Wiener process with a linear drift.

Fig. 2. Cost process of C(t)

As Xk(t) follows the normal distribution with
mean = μkt and variance = σ2

kt, the expected
value and the variance of Ck(t) are given by:
E(Ck(t)) = akckμkt and V (Ck(t)) = akc

2
kσ

2
kt.

Then U(t) has expected value and variance,

E(U(t)) =
n∑

k=1

akckμkt = μU , (9)

and

V (U(t)) =
n∑

k=1

a2kc
2
kσ

2
kt = σ2

U , (10)

respectively.
Obviously, both of Y (t) and U(t) have the same

values μk and σk, respectively, so the covariance
between Y (t) and U(t) is given by

Cov(Y (t), U(t)) = Cov(
n∑

k=1

akXk(t)
n∑

j=1

ckXj(t))

=
n∑

k=1

n∑
j=1

akckCov(Xk(t), Xj(t))

=
n∑

k=1

akckμ
2
kt. (11)

The characteristic function of the bivariate nor-
mal distribution is given by

φ(Y (t),U(t))(t1, t2) = E[exp(it1Y (t) + it2U(t))]

= E[exp(it1

n∑
k=1

akXk(t) + it2

n∑
k=1

akckXk(t)]

= E[exp(i
n∑

k=1

(akt1 + akckt2)Xk(t))]

= E[exp(i

n∑
k=1

(akt1 + akckt2)Xk(t))]

=
n∏

k=1

E[exp(i(akt1 + akckt2)Xk(t))]

=
n∏

k=1

φXk(t)(akt1 + akckt2), (12)

then we can obtain

fY (t),U(t)(y, u) (13)

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
φ(Y (t),U(t))(t1, t2)e

−it1y−it2udt1dt2

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
(

n∏
k=1

φXk(t)(akt1 + ckt2))
−it1y−it2udt1dt2,

(14)

then conditional probability fU(t)|Y (t)(y,u) is
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given by

fU(t)|Y (t)(y,u) =
fU(t),Y (t)(y,u)

fY (t)(y)

=
1

4π2fY (t)(y)

∫ ∞

−∞

∫ ∞

−∞

(
n∏

k=1

φXk(t)(akt1 + ckt2))
−it1y−it2udt1dt2,

(15)

where

φXk(t)(akt1 + ckt2)

= exp{σk[1− (1− 2iμk
2(akt1 + akckt2)σk

−1)1/2]

μk
},

(16)

However, if we consider a real situation: after a
period of time, U(t) becomes so high that using
a new piece of equipment to replace the old one
may be a better choice. Also, the owner of the
equipment may have an expectation overall cost:
when U(t) is larger than this expectation, they will
buy a new piece of equipment. For example, we
assume this expectation cost is LU , which will be
described in the next section. Similarly, we define

ωU = inf{t > 0 : U(t) ≥ LU}, (17)

Then, the pdf of ωU can be obtained as

fωU
(t) =

LU

σU

√
2πt3

exp(
−(LU − μU t)

2

2σU
2t

)

=
LU

σU

√
πt3

φ(
−(LU − μU t)

σU

√
t

). (18)

Then, the cdf of ωU is obtained by

FωLU
(t) = P (U(t) ≥ LU )

= Φ(
−(LU − μU t)

σU

√
t

)− exp(
2μULU

σU
2

).

(19)

3.3. Random effect
Assuming that μk is influenced by other factors
due to various reasons such as different oper-
ating environment and usage intensity,which are
referred to as random effect. We assume that this
random effect follows a gamma distribution over
time. Then μk follows Γ(αk, βk) where αk is the
shape parameter and βk is a scale parameter. Then
μk has pdf as following:

fμk
(x;αk, βk) =

1

βαk

k Γ(αk)
xαk−1e−x/βk (20)

where Γ(·) is a gamma function:

Γ(l) =

∫ ∞

0

yl−1e−ydt

As
μY =

∑n
k=1 akμk which have been described

before, then the expected value and the variance
of μY are given by:E(μY ) =

∑n
k=1 akβkαk and

V ar(μY ) =
∑n

k=1 ak
2βk

2αk.
Then,

μY =
n∑

k=1

akμk, t ≥ 0, ak ≥ 0 (21)

where μk follows the gamma distribution.
According to Moschopoulos (1985), the density

function of μY can be expressed by

zμY
(z) = B

∞∑
k=0

ξkβ
−τ−k
0

Γ(τ + k)
zτ+k−1e−z/β0 (22)

where β0 = minakβk, and B and τ are

B =
n∏

k=1

(
β0

akβk
)αk (23)

and

τ =

n∑
k=1

αk (24)

It is worth noticed that ξk+1 can be obtained as

ξk+1 =
1

k + 1

k∑
j=1

jηjξk+1−j (25)

where ξ0 = 1 and

ηk =
n∑

j=1

αj(1− β0

akβk
)k/k (26)

Using μ′Y to replace the original μY , then, Y (t)
now can be replaced by Y ′(t), which can be pre-
sented by

Y ′(t) = tμ′Y + σY

n∑
k=1

Wk(t), (27)

where μ′Y follows a gamma distribution .

4. Maintenance policies
In this section, we consider the age replacement
policy.

We have discussed the degradation process and
the cost process based on the age replacement
before. Then we attend to discuss the possible
situations under these two processes:
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• Maintenance Policy A: Under the degradation
process, when the degradation level achieves
the pre-specified threshold L, then maintenance
activities will be taken. We assume that this
event as A1.

• Maintenance Policy B: Under the cost process,
when the cost level achieves the pre-specified
threshold LU , then maintenance activities will
be taken. We assume that this event as A2.

• Maintenance Policy C: Only if both A1 and
A2 have occurred, the age replacement will be
conducted. Denote this event as A3 = A1∩A2.

• Maintenance Policy D: If one of the two events,
A1 and A2, occurs, the age replacement will be
conducted. Denote this event as A4 = A1∪A2.

Therefore, G1(t) := P (A1) = FωL
(t) and

G2(t) := P (A2) = FωLU
(t) and these functions

can be obtained

G3(t) := P (A3)

= P (A1 ∩A2)

= P (A1)P (A2|A1)

= FωL
(t)FωLU

(t|ωL)

:= G3(t), (28)

and

G4(t) := P (A4)

= P (A1 ∪A2)

= P (A1) + P (A2)− P (A1 ∩A2)

= P (A1) + P (A2)− P (A3), (29)

where symbol := is used to denote a definition.

4.1. Age replacement policy
For the age replacement policy, a preventive re-
placement is conducted after a continuous work-
ing time Ta when there is no failure occurs Barlow
and Hunter (1960).

The expectation cost per time unit is given by
Let Ta be a replacement age, then the mean time

between replacements M(Ta) will be

M(Ta) =

∫ Ta

0

tf(t)dt+ t0P (X > Ta)

=

∫ Ta

0

tf(t)dt+ t0(t− F (Ta))

=

∫ Ta

0

(1− F (t))dt. (30)

Then, the mean cost per time unit is given by

Ci(Ta) =
cr + cmGi(Ta)∫ Ta

0
(1−Gi(t))dt

, (31)

where i = 1, 2, 3, 4, corresponding to mainte-
nance policies A, B, C, and D, respectively and
Ta is the decision variable. Thus, the maintenance
policy follows these principle.

• The inspection will be taken every Ta.
• Immediately after a preventive or corrective

maintenance, the system rests its age to 0.
• Both cr and cm are constants.

By minimising Ci(Ta), we can obtain the opti-
mum T ∗a for the age replacement policy based on
maintenance policies A, B, C, and D, respectively.

5. Simulation study
We use genetic algorithms to seek the optimal
maintenance intervals.

We consider a system with two different failure
modes. The deterioration process of the two de-
fects is modelled with two Wiener process, each
of which has different μ, α and β parameters. We
assume that two modes has weights as following
a1 = 0.3 and a2 = 0.7. α1 and β1 are 0.4 and 0.5
for the first failure mode, respectively. α2 and β2
are 0.3 and 0.6, respectively.

Thus, the linear combination of the two pro-
cesses is given by

Y (t) = 0.3X1 + 0.7X2.

We assume that the system needs to be repaired
when the degradation levels exceed the threshold
LwL

= 5 and the threshold LwLc
= 3, respec-

tively. Replacement activities will be taken and the
degradation level will be restored to zero when the
component is completely replaced.

We assume that cr = 100 and cm = 50, then
we can obtain the following result:

Fig. 3. Maintenance Policy A
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Fig. 4. Maintenance Policy B

Figures 3 and 4 show the expected cost
per unit time under the maintenance policy A
and B, respectively. Based on the genetic algo-
rithms, we will obtain two optimized results as
Topt = 2.443284 (expected total cost is 82.12779)
and Topt = 1.846838 (expected total cost is
91.36122).

Besides, based on the age replacement policy,
we can obtain the following results:

Fig. 5. Maintenance Policy C

Figures 5 and 6 show the expected cost unit
for the age replacement policy under maintenance
policy C and D, respectively.

• For maintenance policy C, the optimized point
is (Topt = 8.06143) and the expected unit cost
per time is 79.78846.

Fig. 6. Maintenance Policy D

• For maintenance policy C, the optimized point
is (Topt = 3.552036) and the expected unit cost
per time is 64.92507.

Then following table shows a summary result
under different threshold:

Table 2 shows the simulation result in this table.

Maintenance L = 5, Lc = 3 L = 4, Lc = 2
Policy A Topt=2.443284

(82.12779)
Topt=3.014603
(80.19919)

Policy B Topt=1.846838
(91.36122)

Topt=1.846838
(91.36122)

Policy C Topt=8.06143
(79.78846)

Topt=7.03453
(80.56234)

Policy D Topt=3.552036
(64.92507)

Topt=3.014603
(65.09959)

6. Conclusions
This paper discussed maintenance policies for
a system with a linear combination of Wiener
processes. When the degradation level of a lin-
ear combination of the processes exceeds a pre-
specified threshold, the age replacement policy
will be considered as the preventive maintenance
for the system. Besides, we also develop a cost
process which considers the situation that when
the maintenance cost is higher than an expectation
vale, the decision-maker will prefer to replace the
whole system than repair it.

However, there are several limitations in our
research:
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6.1. Limitations and possible development
• The deterioration process of a system may be

a non-linear combination of deterioration pro-
cesses.

• Different component may follow different
degradation models (e.g., one is the Wiener
process and the others are gamma processes).

• The dependence among failure modes may ex-
ist and should therefore be considered.

• A multi-components system can be extended to
a system with multi-phases degradation process
can be considered. If so, changing points or
turning points for a degradation process or a
cost process should be considered.

• The arrival time of a failure mode may be con-
sidered so that the model can be used for some
systems such as crack growth of pavements.
Also, this can be extended to the arrival time
of changing points for a degradation process or
a cost process.

Our future work aims to investigate the above
limitations.
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