
Social Engineering Exploits in Automotive Software Security: Modeling Human-

targeted Attacks with SAM

Matthias Bergler

Computer Science, Technische Hochschule Nürnberg, Germany. E-mail: matthias.bergler@th-nuernberg.de

Juha-Pekka Tolvanen

MetaCase, Finland. E-mail: jpt@metacase.com

Markus Zoppelt

Computer Science, Friedrich Alexander Universität Erlangen, Germany. E-mail: markus.zoppelt@fau.de

Ramin Tavakoli Kolagari

Computer Science, Technische Hochschule Nürnberg, Germany.
E-mail: ramin.tavakolikolagari@th-nuernberg.de

Security cannot be implemented into a system retrospectively without considerable effort, so security must be taken
into consideration already at the beginning of the system development. The engineering of automotive software
is by no means an exception to this rule. For addressing automotive security, the AUTOSAR and EAST-ADL
standards for domain-specific system and component modeling provide the central foundation as a start. The EAST-
ADL extension SAM enables fully integrated security modeling for traditional feature-targeted attacks. Due to the
COVID-19 pandemic, the number of cyber-attacks has increased tremendously and of these, about 98 percent are
based on social engineering attacks. These social engineering attacks exploit vulnerabilities in human behaviors,
rather than vulnerabilities in a system, to inflict damage. And these social engineering attacks also play a relevant
but nonetheless regularly neglected role for automotive software. The contribution of this paper is a novel modeling
concept for social engineering attacks and their criticality assessment integrated into a general automotive software
security modeling approach. This makes it possible to relate social engineering exploits with feature-related attacks.
To elevate the practical usage, we implemented an integration of this concept into the established, domain-specific
modeling tool MetaEdit+. The tool support enables collaboration between stakeholders, calculates vulnerability
scores, and enables the specification of security objectives and measures to eliminate vulnerabilities.

Keywords: automotive systems, social engineering attacks, design, model-based development, modeling, security.

1. Introduction
The importance of security grew as hacks on cars
and other connected devices became widespread
and reported in the general public. Unfortunately,
these are not rare special cases in certain car
models or their particular components: “Hackers
can clone millions of Toyota, Hyundai, and Kia
keys” Greenberg (2020), “A new wireless hack
can unlock 100 million Volkswagens” Green-
berg (2016b), “Helpless in Jeep Cherokee” Tim-
berg (2015). Since modern cars are computers on
wheels, security challenges can be found from nu-
merous systems, such as from anti-theft systems,
tire pressure monitoring systems, remote keys,
Bluetooth, radios (3G, 4G, 5G) and telematics
access functionality. Also, infotainment systems
tend to provide access to 3rd party applications
as well as internet access. Social engineering at-

tacks are also becoming increasingly popular due
to increasing digitalization. The advancing digi-
tal exchange has made it easier for attackers to
gain access to confidential data and thus smuggle
malicious software into the development process
PurpleSec (2021). The headlines on successful
attacks are not only embarrassing, but customer
concerns and lawsuits on vulnerabilities push the
automotive industry to change Timberg (2015).
Developing and maintaining secure systems, how-
ever, is not easy. First, security cannot be an af-
terthought, i.e., a component that may be added
to or removed from an existing system. Second,
security goals and measures to cope with vulner-
abilities cannot be isolated from the rest of the
design and development work. Instead, security
must be designed in already from the very be-
ginning of the system design SAE (2016). Third,
the actual development of secure and trustworthy

Proceedings of the 31st European Safety and Reliability Conference
Edited by Bruno Castanier, Marko Cepin, David Bigaud, and Christophe Berenguer
Copyright c© ESREL 2021.Published by Research Publishing, Singapore.
ISBN: 978-981-18-2016-8; doi:10.3850/978-981-18-2016-8 720-cd 2502



Proceedings of the 31st European Safety and Reliability Conference

systems requires effort. It takes time, requires
expertise from multiple fields and stakeholders,
and needs to be linked with other development
processes and practices. These challenges call for
apt security design practices supporting compa-
nies to smoothly integrate security in their devel-
opment processes. We propose a language-based
approach and present a modeling language, called
Security Abstraction Model (SAM) and its new
extension for social engineering attacks with tool
support for specifying security aspects. Unlike
other approaches Cheah et al. (2017); Macher
et al. (2016); Pattaranantakul et al. (2018); Mat-
ulevičius (2017); Microsoft-Corporation (2005),
SAM is fully integrated into a standardized ar-
chitecture description language, in this case the
automotive-specific systems modeling language
EAST-ADL Blom et al. (2013). It not only focuses
on attacks, vulnerabilities and motivations for at-
tacks but relates them with relevant parts of the
automotive system design. Because of this inte-
gration, SAM also enables to start security design
early on — already when the first high-level fea-
tures of the vehicle are defined. This way, security
is not an isolated afterthought but an integral part
of the system development. Together with the tool
support, SAM enables collaboration of system en-
gineers with security engineers, traceability with
system features, requirements, hazards as well as
calculating vulnerability scores. SAM also helps
in specifying security goals and measures to solve
attacks. We demonstrate these via a case study
along with identified benefits on applying SAM.
We start by introducing the relevance of security
in automotive and its current status. Then we go
into social engineering attacks in automotive and
the resulting danger. Afterwards we present SAM
and the changes for covering social engineering,
followed by the detailed tool implementation for
all of its parts. Section 6 demonstrates the tool
use with a practical example before the lessons
learned and directions for future research are dis-
cussed.

2. Security in Automotive
Automotive system development has always had
to adapt to the latest state of research and eco-
nomic factors. Therefore, modern vehicles be-
came interconnected computer networks in which
many electronic control units (ECUs) communi-
cate with one another and with the environment
(Vehicle-to-X communication). Car manufactur-
ers were producing vehicles that feature advanced
desktop-grade software components. These ve-
hicles have advanced algorithms for assistance
systems and other computer-dominant extensions
that can provide entry points and powerful tools
for malicious attackers. It is thus not surprising
that the number of scientific publications on au-
tomotive security has increased drastically Amen-

dola (2004); Hubaux et al. (2004); Wolf et al.
(2004). Considering the fact that autonomous ve-
hicles will continue rather than reverse the trend
towards more communication interfaces for rea-
sons of functionality, safety and comfort, collec-
tive research efforts in the field of vehicle secu-
rity are reasonable; after all, human lives are at
stake every time these “driving computers” are
the target of attacks. Combining state-of-the-art
software components with legacy interfaces and
hardware infrastructure decisions results in a risky
set up from an IT security perspective. Legacy
mechanisms like insecure and unencrypted proto-
cols (e.g., Controller Area Network (CAN)) were
originally not designed in accordance with today’s
security principles. Secure automotive network
architectures were not prioritized in the past due
to the general prejudice of cars’ security due to
their technical complexity (security by obscurity).
Sluggish development processes, lack of standard
guidelines and low societal pressure lead to a
rather slow transformation of automotive develop-
ment processes taking the security-by-design prin-
ciple systematically into consideration. Most ex-
isting countermeasures against cyber-attacks, e.g.,
the use of message cryptography for encrypting,
authenticating or randomizing vehicle-level net-
work messages focus on concrete attacks and do
not consider the complexity of the access options
offered by modern vehicles Zoppelt and Kolagari
(2019). This is mainly due to a solution-oriented
approach to security problems. Defining and en-
forcing security goals for the automotive system
helps to improve overall security. In the presented
work, we address the security goals integrity, au-
thenticity, confidentiality, reliability, availability
and accountability. Many attack vectors often af-
fect multiple security goals at once. Some of the
attack vectors known to cause major threats to
automotive systems include:

• Gaining remote control access to the vehicle us-
ing the OEMs cloud and/or mobile application’s
infrastructure Nie et al. (2018); Lab (2019); Nie
et al. (2017); Lab (2018).

• Getting SecurityAccess via Unified Diagnostic
Services (UDS) Van den Herrewegen and Gar-
cia (2018).

• Controlling the car via Onboard Diagnostic
(OBD) injection Zhang et al. (2016).

• Remotely breaking into the telematics unit Fos-
ter et al. (2015).

• Infecting the system with ransomware Ring
(2015).

According to the SAE J 3601 ”Cybersecurity
Guidebook for Cyber-Physical Vehicle Systems”
SAE (2016), security affects the entire develop-
ment, production and operation process of auto-
motive systems. This is described in explicit anal-
ogy to ISO 26262-1:2018 (2018) the functional



Proceedings of the 31st European Safety and Reliability Conference

safety standard in the automotive sector, and re-
sults directly from the rule that security must be
considered at the system design stage (”security
by design”). With regard to concrete instructions
in terms of the techniques to be used, the standard
is fairly reserved, but in relation to model-based
automotive system development, SAE (2016)
refers in Appendices A-C to techniques for threat
analysis and risk assessment, threat modeling and
vulnerability analysis (e.g., attack trees) and ex-
plains when these should be used. The referenced
techniques are relevant to the early stages of de-
velopment in that they can be linked to require-
ments and design specifications by their illus-
trative (attack trees Cheah et al. (2017)), table-
based Macher et al. (2016), use-case-based Pat-
taranantakul et al. (2018) and misuse case-based
Matulevičius (2017) character. The development
of threats and related information is typically per-
formed by the STRIDE Threat modeling tech-
nique Microsoft-Corporation (2005) aiming to
identify early possible security problems that may
happen during the operation of a system. This
approach is helpful even today, but what is true
for this approach is equivalent to security model-
ing for enterprise systems: These approaches are
not integrated into the design of the respective
domain. Thus, it is not possible to identify the
iterative cross-relationships between the designed
system and security.

3. Social Engineering Attacks in
Automotive

Thanks to the advanced digitization in commu-
nication, it is now possible to network and ex-
change ideas at any time. Especially during the
COVID-19 pandemic, digitization is a key ele-
ment in economy continuity. However, these dig-
ital communication systems are easily attackable
and offer a weak point for engineering attacks,
as we cannot identify our counterpart directly.
Social engineering attacks in particular become
increasingly popular with attackers, as they often
lead to success despite the comparatively greater
effort involved. This is because they are specially
designed to exploit human weaknesses in behavior
in order to obtain unauthorized access or sensitive
data Mitnick and Simon (2003). The greater effort
with some attacks depends on the fact that they
have to be specially adapted to individual people,
such as an employee of a certain company. Based
on the technical report by the PurpleSec Asso-
ciation, the number of all kind of cyber-attacks
has increased sixfold since the beginning of the
pandemic and 98 percent of the cases are social
engineering attacks PurpleSec (2021).
There are very different types of such attacks.
These can be human-based or computer-based
Xiangyu et al. (2017). Human-based means that
there is direct interaction with a person, e.g. fake

service calls or the well-known grandchildren’s
trick. Computer-based attacks are carried out us-
ing computer or email programs, e.g. phishing
attacks. Even if the types of attack differ from one
another, social engineering attacks always have
the same pattern Mouton et al. (2016):

(i) Collect information about the target.
(ii) Develop relationship with the target.

(iii) Exploit the available information and execute
the attack.

(iv) Exit with no traces.

In the automotive sector too, social engineering
attacks may lead to success and create vulnerabil-
ities for further attacks. These weaknesses have to
be taken into account when developing the vehicle
components. Although a vehicle cannot become a
direct victim of a social engineering attack, suc-
cessfully carried out attacks on employees in vehi-
cle development or even a private person can lead
to an attacker gaining access to individual vehicle
parts or the entire vehicle. In many cases, these
attacks can only be discovered but not prevented,
e.g. in the case of a quid pro quo attack, in which a
victim provides information or access in exchange
for other services.
In addition to social engineering attacks on em-
ployees at a vehicle parts manufacturer in order
to gain access to systems, private car owners are a
popular target. There may be different motivations
for the attack. Either an attempt can be made
to take control of the vehicle himself by using
social engineering attacks to trick the owner into
installing malicious software or hardware in the
vehicle, as described in Costantino et al. (2018),
or valuable information about the driver can be
obtained using vehicle data for further social en-
gineering attacks on targets related to the victim,
e.g. the victim’s employer. An attack could look
like this:
First of all, the vehicle type of the victim is spied
out. The attacker then contacts the victim with the
identity of a service employee and tries to find out
more about the vehicle, the infotainment system
and its usage behavior in a service conversation.
He then offers the victim a free security update
via CD, USB stick or mobile phone app, which
the victim can download from a fake website
or receive by post. This update actually installs
malicious software that enables the attacker to
read the victim’s mobile phone data or to access
the microphone of the hands-free system in or-
der to record conversations and send them to the
attacker via the mobile data connection of the
mobile phone or vehicle. Alternatively, software
can also be installed that gives the attacker control
of the vehicle as in Greenberg (2016a). In order to
prevent such attacks, possible points of attack via
social engineering attacks must be identified and
taken into account during the development of the



Proceedings of the 31st European Safety and Reliability Conference

components. With the latest expansion of SAM
it is now also possible to map social engineering
attacks and develop a counter strategy.

4. SAM: Automotive Domain Specific
Security Modeling Approach

SAM is a modeling language for representing
security-relevant properties of automotive soft-
ware systems. It enables a security analysis of
automotive attack vectors and conducts a thorough
threat analysis. By means of systematic security
analyses the effort for a potential attack can be
quantified and appropriate counter measures can
be modeled. The approach closely links security
management and model-based system engineer-
ing by an abstract description of the principles
of automotive security modeling. The resulting
specification of SAM is based on security require-
ments that have been extracted from common in-
dustrial scenarios Zoppelt and Kolagari (2018). It
aims to be a solution for representing attack vec-
tors on vehicles and provide a thorough security
modeling for the automotive industry.

4.1. Feature-Targeted Attacks

SAM has a close link to the architecture descrip-
tion via ‘Item’ entity (as in ISO 26262-1:2018
(2018) and Blom et al. (2013)) from the architec-
ture model, playing the role of a ‘Feature’ from
traditional security approaches. SAM aims to ex-
press all the important criteria of the attack vectors
from the adversary’s motivation up to the security
breach—to enable modeling of the system in early
software development phases. In addition to at-
tack motivations, SAM also describes all intrinsic
and temporal characteristics of an attack, e.g.,
effects on the security objectives (confidentiality,
availability, integrity, etc.), the complexity of the
attack, the affected object and the vulnerability.
The reason why we extended EAST-ADL rather
than other languages like SysML or AADL is
that EAST-ADL already addresses relevant as-
pects of automotive systems, namely its product
line nature by specifying explicitly features that
are either visible to customers (e.g., lane detec-
tion or regenerative braking) or on technical level
(e.g., power generation control). EAST-ADL also
directly addresses functional safety and ISO26262
with its Dependability Model. SAM identifies the
same Items, Requirements and Hazards from ar-
chitecture and dependability modeling and related
them to Attacks and Security Concepts. Although
SAM is developed as part of the EAST-ADL, it is
not necessarily bound to EAST-ADL. SAM mod-
els are meant to be used and applied by anyone
wanting to conduct a threat analysis of attacks
in the automotive domain. SAM models have no
aspiration to completeness with the rest of the
systems model and can be used even in the very

first phases of the system engineering process.
Though it is advised to comply with the rest of
the EAST-ADL systems model, SAM models can
be used standalone.

4.2. Human-Targeted Attacks

In order to enable the representation of social
engineering attacks in SAM, we had to adapt the
original metamodel (Zoppelt and Kolagari (2018))
to provide the necessary classesa. For this pur-
pose, the new abstract class ‘Target’ was intro-
duced. This class generalizes the Item class al-
ready known in SAM, which represents the con-
nection to the EAST-ADL, and the new Human-
Actor class, which is required for social engi-
neering, as this can only be carried out on the
basis of a person. The new class HumanActor has
two attributes of the String type, which represent
the exploitable human properties of curiosity and
helpfulness. The use of these properties is either
not defined (X), none (N), i.e. not used, low (L),
used slightly, or high (H), used to a high degree.
In addition, an association of the Resilience class
refers to the HumanActor class. This class repre-
sents the mental resistance to social engineering
attacks and possesses the attributes cautiousness,
contentment, courage, experience and knowledge.
They all correspond to the ResilienceLevel type,
with which the extent of the property, required to
defend against the attack, is measured. The differ-
ent levels are low (L), low intermediate (LI), inter-
mediate (I), high intermediate (HI), high (H) and
not defined (X). The higher the demands on the
resilience of a victim, the more successfully a so-
cial engineering attack can be carried out and the
more adequate security concepts must be designed
to counteract it. In section 6 an example of a social
engineering attack with SAM is demonstrated.
A security assessment through social engineering
attacks can be carried out independently of the
assessment of an Item, but it should definitely
be considered. With the extension, SAM remains
backwards compatible, as the use of social engi-
neering attacks is optional in the application. The
Common Vulnerability Scoring System (CVSS)
is not relevant for the assessment, as the values
in the Resilience class show an assessment of
the severity of the attack but a extended scoring
system is under development.

5. Language Implementation
While it is possible to create tooling for SAM
from scratch, we applied MetaEdit+ MetaCase
(2018b), a commercial language workbench, pro-
viding most of the needed functionality auto-
matically: Only parts specific to SAM, its mod-
eling concepts, rules, notation and integration

ahttps://www.in.th-nuernberg.de/professors/BerglerMa/SAM



Proceedings of the 31st European Safety and Reliability Conference

with other tools, needed to be defined. This not
only speeds up the implementation, but also en-
ables easy evolution when the modeling needs
change. MetaEdit+ provided also implementation
of EAST-ADL MetaCase (2019) and other rele-
vant functionality needed for automotive system
development such as collaborative modeling, ver-
sion control, integration with relevant tools ap-
plied in automotive (e.g., programming environ-
ments, Simulink, requirements management etc.)
as well as having availability of supporting ser-
vices. The only parts that deserved attention re-
lated to tooling were those parts not addressed by
most metamodels, such as showing elements of
SAM in the user interface (toolbar and browsers)
based on their relevance, or decide how to in-
dicate if constraints are not followed. In current
definition, constraints that are considered manda-
tory are checked and reported at modeling time.
Those constraints, not sensible to check like min-
imum cardinalities in the metamodel, are shown
as recommendations in the live check pane at the
bottom of the diagram. This way language users
get immediate guidance to create security models.
The original definition of SAM, similarly to the
definition of EAST-ADL, focused on language
concepts and on defining the exchange format via
a metamodel. The definition of the whole lan-
guage also needed to cover concrete syntax, all
constraints, language usability topics as well as
integration with other tools. These are detailed in
the following subsections.

5.1. Implementation of SAM concepts

The implementation started by integrating SAM
in the existing metamodel of EAST-ADL. First,
the same conventions as applied in EAST-ADL
and AUTOSAR were followed: Security models
followed the same naming policies with short and
optional longer names and all model elements
had a globally unique identifier (UUID). Second,
SAM was defined to follow the same package
structure as EAST-ADL uses to organize specifi-
cations. Third, concepts of SAM were integrated
with already existing EAST-ADL concepts, like
Item from Dependability and ISO26262, Vehicle-
Feature from variation models addressing product
lines and Requirements from specifying and trac-
ing with system requirements. Since MetaEdit+
allows to specify metamodels graphically (Meta-
Case (2018a)) similarly to UML, SysML, EAST-
ADL or AUTOSAR as well as SAM we applied
the form-based metamodeling tools of MetaEdit+.
These allow the integration of all other related
language constraints, notations as well as model
checking and generators, which otherwise would
be specified seperately, if at all, in addition to the
metamodel. This tight integration of the whole
language definition improves the quality of the
language greatly. The typical problems from lan-

guages defined in an unintegrated manner, like
inconsistencies and low quality Wilke and De-
muth (2011); Bauerdick et al. (2004), can be more
easily avoided. Figure 1 shows the concepts of
SAM defined in MetaEdit+. The list of Objects
shows the key modeling elements of SAM, the list
of Relationships the connections between these
elements, and the list of Roles how an object par-
ticipates in the relationships, such as be directed
or undirected, having constraints or detailed prop-
erties. To minimize the modeling effort the im-
plementation defines one AttackMotivation and
its concrete subtype is selected from a property.
This way the type of AttackMotivation (Harm,
Financial Gain etc.) can be changed without delet-
ing the old one and creating and re-connecting a
new one. This definition, compared to having a
language construct for each subtype, is possible
because all subtypes have the same properties and
constraints. Also, for the reference from Attack
to OperationalSituation, the role AttackSituation
has a property to select if based on Traffic or
Environment. Each element of SAM shown in
Figure 1 are defined with further details. Figure
2 shows one such definition: The Vulnerability
and its nine properties. The first three are obtained
from EAST-ADL and AUTOSAR metamodel and
the remaining from SAM. These properties have
rules and constraints, such as ‘Short name’ be-
ing mandatory and starting with an alphabetical
character followed by possible characters, num-
bers or underscores (defined as regular expres-
sion: [a-zA-Z](_?[a-zA-Z0-9])*_?. An-
other constraint of SAM is that Scope of Vulner-
ability may have only two possible values (un-
changed or changed). To support usability, we
slightly changed the ordering of the properties as
set in the original metamodel to follow the order
in which security engineers are expected to fill
them and follow the same order as the vulnera-
bility analysis tool Common Vulnerability Scor-
ing System CVSS FIRST.Org (2019). The use

Fig. 1. Defined language concepts of SAM.



Proceedings of the 31st European Safety and Reliability Conference

of Vulnerability concept is illustrated in Figure
3. The definition of the Vulnerability modeling
concept was finalized by providing a description
of this SAM concept (see Figure 2 the bottom
of the window). Constraints of SAM are ensured
in two different ways: either as part of the meta-
model or applied via model checker. Examples
of the former are rules on legal connections and
uniqueness of element names. These constraints
can be checked and ensured at modeling time,
i.e., security models always follow them. As an
example Vulnerability can refer to four model
elements only (HumanActor, Item, Requirement
and Score).

5.2. Integration with Score Calculation

Models made with SAM can be applied to analyze
and calculate vulnerability scores. First we imple-
mented a generator exporting data from models to
CVSS to an online tool. CVSS provides a way to
produce a numerical score reflecting the severity
of vulnerability. The resulting numerical score can
then be translated into a qualitative representation
(such as low, medium, high, and critical) to help
organizations properly assess and prioritize their
vulnerability management processes. In the same
way integration with other analysis tools can be
done, or if they provide other mechanisms, like
programmable APIs, the modeling tool can ap-
ply them. Depending on the capabilities of the
analysis system, the results can then be included
back to the model. For example, MetaEdit+ can
show the score directly in the Vulnerability model
element. This information would then be also
available when tracing from security properties
to requirements, features and system design in
general. Since integration from the external web-
based calculator was not possible, and even if
available would lead to slower modeling and score
calculation process, also requiring an online con-

Fig. 2. Definition of Vulnerability.

nection, we implemented the CVSS calculator
into the SAM modeling tool. This was done using
the same generator system applied to produce vul-
nerability vectors to the existing CVSS calculator.
The benefit of this latter approach is showing
vulnerability scores immediately. In other words,
scores are calculated real-time during modeling.
We applied the existing Score element to show
the results and followed also the color schemes of
CVSS for the notation of Score. Figure 3 shows
running the calculation at modeling time and dis-
playing the results directly in the model: Base
metric of CVSS in case of Service Call Scam
Attack is 8.8 (high) and CVSS for temporal score
is 8.1 (high).

6. Case Study: Service Call Scam
In this example, we show a social engineering
attack with the aim of getting the vehicle owner
to update the infotainment system with malicious
software. This software is supposed to access the
function of the hands-free system via a back door
and record phone calls or conversations made in
the vehicle and forward them to the attacker via
the internet connection of the smart phone as seen
in Costantino et al. (2018). For this purpose, as in
Figure 3, a service call from the car manufacturer
is faked and the victim is provided with a soft-
ware update for the infotainment system. Since
the identity of the service employee cannot be
confirmed over a telephone call, the victim must
have high values in cautiousness, experience and
knowledge. What makes preventing such an attack
on the part of vehicle manufacturers difficult and
dangerous. Much more defective software could
also be installed, which would result in a loss
of control over the vehicle as seen in Greenberg
(2016a). Since CVSS is also implemented into
the modeling tool, the same metrics are shown
inside the metric element connected to individual
Vulnerabilities (both base and temporal metric
values are ‘high’). This way the resulting metric
scores are not only seen at modeling time but
also versioned, reported and documented along
with the rest of the system design. Based on the
specified security model, we can analyze the at-
tack properties and try to derive SecurityConcept
with requirements that must be satisfied to fix the
vulnerabilities. In this case the requirements are
different choices for update handling.

7. Conclusion
Security must be designed in at an early stage,
be part of the rest of system designs, and be eas-
ily integrated with existing system development
practices. We presented the extension of SAM
for social engineering attacks and addressed the
danger of social engineering attacks to create vul-
nerabilities. We also introduced a tool support



Proceedings of the 31st European Safety and Reliability Conference

Fig. 3. SAM model of Service Call Scam.

for developing secure automotive systems. The
unique part of the proposed approach is its integra-
tion in existing architecture modeling languages
applied in the automotive industry. In our case
we demonstrated the implementation with EAST-
ADL tooling. The developed modeling support
provides several benefits for development teams:

• Security issues can be considered in relation
to the system design—starting when the first
customer visible features are identified.

• The proposed security language and tool sup-
port, guides developers by considering relevant
aspects such as attacks, their motivation, vul-
nerabilities and relation to vehicle features.

• The security models are related with the rest of
the system designs, with traceability.

• Vulnerability scores can be calculated immedi-
ately and be part of security models.

• Support communication and collaboration
within a team.

We also presented the language implementation
process covering the metamodel with rules, visual
notation and integration with model analyzer. Be-
cause the investment on implementing tool sup-
port is modest, it pays off quickly as all the other
developers can then model with the language, link
with existing designs and produce vulnerability
metrics on the identified attacks. This also indi-
cates that the effort in implementing tool sup-
port for SAM with other modeling languages is
modest—at least with current tooling and tools
having access to the full metamodel. As both
the modeling language and generators are fully

open for modifications, the presented approach
also gives full control for the company enabling
future updates, like targeting other vulnerability
analysis tools. Decision makers such as managers
who allocate resources to security and engineers
to implement countermeasures, or people without
a security background who are not interested in
all the details of an attack, may be overwhelmed
by the level of detail of SAM, so due to collab-
orative nature of design work, the main users are
both security engineers and system developers. At
the same time, however, it is essential, especially
for decision-makers, to understand and correctly
assess the threat posed by attacks. This is why an
additional view is needed that does not show all
the details that a fully blown SAM model offers
but can provide a quick overview of the mecha-
nisms of operation and the severity of an attack.
This provides a reliable initial basis for deciding
on the allocation of resources for the creation of
countermeasures. Our future work also focuses
on process: Provide a methodology with a step-
by-step refinement of the available information,
whereby the refinement results on the one hand
in the security expert gaining knowledge about
details of the attack (over time) and on the other
hand in extending the CVSS to consider resilience
for social engineering attacks.

References
Amendola, S. (2004). Improving automotive secu-

rity by evaluation—from security health check
to common criteria. White paper, Security Re-
search & Consulting GmbH 176.



Proceedings of the 31st European Safety and Reliability Conference

Bauerdick, H., M. Gogolla, and F. Gutsche (2004).
Detecting ocl traps in the uml 2.0 superstruc-
ture: An experience report. In International
Conference on the Unified Modeling Language, pp.
188–196. Springer.

Blom, H., H. Lönn, F. Hagl, Y. Papadopoulos, M.-
O. Reiser, C.-J. Sjöstedt, D.-J. Chen, F. Tagli-
abo, S. Torchiaro, S. Tucci, et al. (2013). East-
adl: An architecture description language for
automotive software-intensive systems. In Em-
bedded Computing Systems: Applications, Optimiza-
tion, and Advanced Design, pp. 456–470. IGI
Global.

Cheah, M., H. N. Nguyen, J. Bryans, and S. A.
Shaikh (2017). Formalising systematic security
evaluations using attack trees for automotive
applications. In IFIP International Conference on
Information Security Theory and Practice, pp. 113–
129. Springer.

Costantino, G., A. La Marra, F. Martinelli, and
I. Matteucci (2018). Candy: A social engi-
neering attack to leak information from info-
tainment system. In 2018 IEEE 87th Vehicular
Technology Conference (VTC Spring), pp. 1–5.

FIRST.Org, I. (2019). First, common vulnerability
scoring system, version 3.1.

Foster, I., A. Prudhomme, K. Koscher, and S. Sav-
age (2015). Fast and vulnerable: A story of
telematic failures. In 9th {USENIX} Workshop on
Offensive Technologies ({WOOT} 15).

Greenberg, A. (2016a, January). The Jeep Hack-
ers Are Back to Prove Car Hacking Can Get Much
Worse. Wired.

Greenberg, A. (2016b, March). Radio Attack Lets
Hackers Steal 24 Different Car Models. Wired.

Greenberg, A. (2020). Hackers can clone millions of
Toyota, Hyundai, and Kia keys. Wired.

Hubaux, J.-P., S. Capkun, and J. Luo (2004). The
security and privacy of smart vehicles. IEEE
Security & Privacy 2(3), 49–55.

ISO 26262-1:2018 (2018, December). Road ve-
hicles — Functional safety. Standard, In-
ternational Organization for Standardization,
Geneva, CH.

Lab, T. K. S. (2018). Experimental security as-
sessment of bmw cars: A summary report.

Lab, T. K. S. (2019). Experimental security re-
search of tesla autopilot.

Macher, G., E. Armengaud, E. Brenner, and
C. Kreiner (2016). A review of threat analysis
and risk assessment methods in the automotive
context. In International Conference on Com-
puter Safety, Reliability, and Security, pp. 130–141.
Springer.

Matulevičius, R. (2017). Security risk-oriented
misuse cases. In Fundamentals of Secure System
Modelling, pp. 93–105. Springer.

MetaCase (2018a). The graphical metamodeling
example.

MetaCase (2018b). Metaedit+ user’s guide.
MetaCase (2019). East-adl tutorial.

Microsoft-Corporation (2005). The stride thread
model.

Mitnick, K. D. and W. L. Simon (2003). The
art of deception: Controlling the human element of
security. John Wiley & Sons.

Mouton, F., L. Leenen, and H. Venter (2016).
Social engineering attack examples, templates
and scenarios. Computers & Security 59, 186–
209.

Nie, S., L. Liu, and Y. Du (2017). Free-fall:
Hacking tesla from wireless to can bus. Briefing,
Black Hat USA 25, 1–16.

Nie, S., L. Liu, Y. Du, and W. Zhang (2018).
Over-the-air: How we remotely compromised
the gateway, bcm, and autopilot ecus of tesla
cars. Briefing, Black Hat USA.

Pattaranantakul, M., R. He, Q. Song, Z. Zhang,
and A. Meddahi (2018). Nfv security survey:
From use case driven threat analysis to state-of-
the-art countermeasures. IEEE Communications
Surveys & Tutorials 20(4), 3330–3368.

PurpleSec (2021). 2021 cyber security statistics
the ultimate list of stats, data & trends.

Ring, T. (2015). Connected cars - the next target
for hackers. NetworkSecurity 11, 11–16.

SAE, S. (2016). j3061, cybersecurity guidebook
for cyber-physical vehicle systems. Nr 1, 52.

Timberg, C. (2015, July). Hacks on the Highway.
Washington Post.

Van den Herrewegen, J. and F. D. Garcia (2018).
Beneath the bonnet: A breakdown of diagnostic
security. In European Symposium on Research in
Computer Security, pp. 305–324. Springer.

Wilke, C. and B. Demuth (2011). Uml is still
inconsistent! how to improve ocl constraints in
the uml 2.3 superstructure. Electronic Communi-
cations of the EASST 44.

Wolf, M., A. Weimerskirch, and C. Paar (2004).
Security in automotive bus systems. In Work-
shop on Embedded Security in Cars, pp. 1–13.
Citeseer.

Xiangyu, L., L. Qiuyang, and S. Chandel (2017).
Social engineering and insider threats. In
2017 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery
(CyberC), pp. 25–34.

Zhang, Y., B. Ge, X. Li, B. Shi, and B. Li (2016).
Controlling a car through obd injection. In
2016 IEEE 3rd International Conference on Cyber
Security and Cloud Computing (CSCloud), pp. 26–
29. IEEE.

Zoppelt, M. and R. T. Kolagari (2018). Sam: a
security abstraction model for automotive soft-
ware systems. In Security and Safety Interplay of
Intelligent Software Systems, pp. 59–74. Springer.

Zoppelt, M. and R. T. Kolagari (2019). What
today’s serious cyber attacks on cars tell us:
consequences for automotive security and de-
pendability. In International Symposium on
Model-Based Safety and Assessment, pp. 270–285.
Springer.


