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Abstract

Filtering spike contaminated velocity time series, recorded by Acoustic or Laser Doppler Velocimeter (ADV or
LDV) in laboratory open-channel flow studies and field measurements, has always been challenging. Despite
numerous conducted studies on the velocity time-series signal filtering methods, the importance of the number
of spikes of invalid data on the performance of filtering algorithm has not been determined. Indeed, there is
still a lack of comprehensive and updated study on the performance of despiking algorithms of the velocity
signals. In the present study, a new developed software package for despiking Doppler Velocimeter Data has
been introduced. The package is composed of various detection techniques such as Phase-Space Threshold
(PST), Velocity Correlation Filter (VCF), Kernel Density Estimation (KDE). A new filtering technique, so called
“Three Dimensional Fast Kernel Estimation (3D-fastKDE)” has been developed and employed to detect spikes
in highly polluted signals. Implemented replacement algorithms include Last Good Values (LGV), and 12
points cubic polynomial interpolation (12pp). The performance and accuracy of detection and replacement
techniques has been explored in this study using different experimental data sets.
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1. INTRODUCTION

The Acoustic Doppler Velocimeter (ADV) was introduced in the early 1990s and has since been vastly
used for experimental and field studies (Lane et al., 1998; Nikora and Goring, 2000; Puertas et al., 2004).
Despite the ADV advantages, noises in the measured data, which usually arise in form of spikes in the
velocity signal remains as the unsolved main issue (Goring and Nikora, 2002; Lane et al., 1998). A set of
researches have been done to compare the results of measured velocity by an ADV with other velocity
measuring instruments (Lohrmann et al., 1994; Nikora and Goring, 1998; Voulgaris and Trowbridge, 1998;
Hurther and Lemmin, 2008; Khorsandi et al., 2012; Hejazi et al., 2016). The results show the opportune
exactitude of ADV in measuring the average velocity and high relatively impact of noises on turbulent
characteristics. Consequently, in order to improve the accuracy of the results, comprehending the causes of
errors and using post-processing methods to enhancement the veracity of measurements has consummate
more attention.

Spikes can transpire in ADV measured data due to flow aeration rate, high turbulence intensities,
overstepping of the velocities from the ADV probe velocity range (Goring and Nikora, 2002). The basic flow
characteristics such as power spectrum, kinetic turbulent energy, and turbulence characteristics are
inconsistent with the actual values due to the presence of these spikes (Lane et al., 1998; Wahl, 2000; Garcia
et al., 2005; Cea et al., 2007). Consequently, spikes must be removed or replaced from the time series using
appropriate methods.

Variety of methods have been developed to discern spikes, replacing or detaching them from the ADV
velocity time series. Goring and Nikora (2002) presented the Acceleration thresholding method, which is
claimed to be useful for despiking signals free of complex spikes, and the Phase-Space thresholding method
(PST) for complex spikes. The PST method plots each turbulent velocity fluctuation and its derivatives against
each other in phase-space using Poincaré map equations to correct inaccurate data resulting from data
aliasing. This method was the basis of many subsequent despiking algorithms and was modified to further
improve the quality of the data measured by (Wahl, 2003). Utilizing the 3D PST algorithm to omit the spikes
from measured velocity temporal signal in bubbly flows, was scrutinized by Mori et al. (2007). Using the PST
approach, Cea et al. (2007) presented the Velocity Correlation Filter (VCF) by considering the correlation
between velocity components. This technique plots all three velocity components against each other in phase-
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space, which is claimed to perform better than PST in highly turbulent flows. Parsheh et al. (2010) proposed
the Modified Phase-Space thresholding method (mPST) by considering a pre-filter condition before applying
the PST algorithm to prevent the identification of suitable data adjacent to long spikes (due to the high
magnitude of velocity fluctuation gradient). Islam and Zhu (2013) proposed a despiking algorithm based on
kernel density estimation equations by studying an experimental dataset near a wall jet that was highly
contaminated with spikes. They found out that antecedent methods were not utilitarian in these highly polluted
datasets, where more than 40% of the data is consists of spikes. Irrespective of significant progression, there
is still no comprehensive algorithm that can be used in all flow conditions and with any percentage of data
pollution. Considering the spikes number in a velocity signal, some researchers have claimed that their
proposed method is suitable for data with low number of spikes and uncomplicated spikes, while some claim
that their proposed method is suitable for data with high pollution rates (high number of spikes).

This paper introduces the new developed software package and obtained results. Embedded replacement
and detection techniques are addressed, followed by introducing a new developed detection technique. The
performance of the developed technique has been explored and discussed, presenting the results obtained by
utilizing different experimental data sets.

2. METHODOLOGY
2.1. Filtering Algorithms

The developed program includes distinct detection algorithms composed of Phase-Space Thresholding
Method (PST), Velocity Correlation Filter (VCF) and classical Kernel Density Estimation (KDE). Also, the 3D-
fastKDE has been developed and added to this package. The PST method is one of the most common and
popular detection techniques, which is the basis of many subsequent algorithms. This loading method was
introduced by Goring and Nicor (2002) and then other researchers conducted further studies on it. The basis
of this method is the involvement of phase-space equations of velocity and its first and second derivatives in
the despiking operation (u — Au — A%u). Following this technique, Cea et al. (2007) proposed VCF by
conceptualizing the PST method in order to consider the correlation between velocities in different directions
and to improve the algorithm in turbulent flows with very high concentrations of air bubbles. Studies have
shown that in this type of flows, there is a possibility of producing additional spikes if replacement algorithms
are used. In this method, instead of examining the instantaneous velocity in each direction against the first-
order and second-order derivatives used in PST, the velocities in all three directions are plotted against each
other (u — v —w). Similar to the PST algorithm, the equations used to calculate the criteria ellipse diameters
are derived from the Universal threshold and the standard deviation of each velocity component.

The KDE is also based on the kernel bivariate distribution function (Islam and Zhu, 2013). One of the most
important advantages of this method is its non-iterative process. The kernel equations act as a 2D histogram
that can specify a 2D density estimate in the dataset measured by ADV. In this method, after normalizing and
transferring the data to the center of the coordinate, the dataset density is calculated using kernel equations.

2.1.1. 3D-fastKDE detection

The principal idea of this algorithm is derived from the KDE algorithm proposed by Islam and Zhu (2013)
and the velocity correlation Filter (VCF) algorithm proffered by Cea et. al (2007). In algorithms such as phase-
space and kernel density, which are calculated based on the instantaneous velocity of each direction and their
derivatives, the correlation between velocities in other directions is not considered, and the maximum
correlation participation is the clearance of spikes detected in one direction from all three velocity components.
Accordingly, the logic of the Velocity Correlation Filter algorithm, which operates by considering the correlation
and covariance between the velocity components, has been utilized. To consider the correlation between
velocity components, the longitudinal, transverse, and vertical velocity components are placed against each
other, and calculations are performed given pursuant thereto. Thus, by reckoning the three-dimensional kernel
density estimation, the peak location and maximum density are selected and the appraisals are performed in a
three-dimensional space. Nevertheless, the main objection to this idea was program runtime. By selecting 64
grid points, the average time to estimate 3D density was about 50 minutes. By selecting 256 grid points, the
approximate time for estimating 3D density was about 12 hours for Python which is an interpreted
programming language. To solve this enormous hitch, many occasions were investigated. Including
converting one three-dimensional kernel to three two-dimensional kernels or using conditional equations to
estimate 3D density. Notwithstanding the fact that converting the 3D kernel to 2D kernels greatly increased
the execution speed of the program and, despite selecting 256 mesh networks, reduced the execution time of
the algorithm to about 30 seconds, however the logic of the algorithm is in 3D space and sphere coordinates

©2022 TAHR. Used with permission / ISSN-L 2521-7119 5166



Proceedings of the 39th IAHR World Congress
19-24 June 2022, Granada, Spain

should be utilized (Wahl, 2003). Furthermore, the use of conditional equations did not significantly succor the
runtime of the algorithm and the filtering operation. Especially when the total number of data was high, much
more time was spent estimating 3D density. To untangle the knot of filtration runtime by estimating 3D density,
the method of Fast Kernel Density Estimation (fastKDE) was used. O’Brien et al. (2016) proposed equations
for estimating fast univariate and multivariate density estimation in terms of vector correlations. The fastKDE
method demonstrates statistical accuracy and generates kernel density estimates several times faster. For a
succinct revision, for a generalized, multivariate kernel density estimation P(X) for d-dimensional multivariate
data Xi (for 1 =1, 2, ..., n) using a haphazard shape of kernel function K(X):

P(X) = N‘lzK(X - X)=N"1 Z fwK(s).d(X —X;—s).ds 1

where &(x) denotes the Dirac delta function and X denotes the data coordinates. The inverse Fourier
transform of KDE can be demonstrated as:

() = F7HPX)) = k(6). (D) [2]

where t stands for frequency spaced coordinates and f -’ denotes the multi-dimensional inverse Fourier
transform from X to t, k denotes the inverse Fourier transform of kernel and / represent the ECF which is

defined as:
N
Z %)k [3]
j=1

and an optimal transform kernel is defined as Bernacchia and Pigolotti (2011):

I(t) =

=~

4(N—-1)

= N

where Ia(f) denotes a frequency filter which is equal to 1 for the frequencies A used in kernel density
estimation and 0 otherwise. Utterly particulars have been provided in O’Brien et al. (2016). Using this method
to estimate density, diminished the execution time of the 256, 256, 256 three-dimensional mesh grids to 13
seconds. To use the new 3D fast kernel density estimation algorithm to despike the data measured by the
ADV, the rotation of the three-dimensional matrix is performed by the vectors of longitudinal velocity u,
transverse velocity v and vertical velocity w. The 3D density of the transmitted and standardized data must
then be calculated. After 3D estimation of the density, which is selected as a three-dimensional matrix n x n x
n where n denotes the number of grid points, the location of the density peak is distinguished amidst all three
dimensions of the matrix. Figure 1 shows a 3D density estimation of data measured by ADV. Subsequently,
we can do the same as the simple kernel density estimation algorithm and calculate the criteria ellipse
diameters. Instead of the fixed criterion of 0.4, the dynamic criterion introduced in Universal threshold equation
is used. The number of 257 grid points was chosen.
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Figure1. 3D density estimation of data measured by Acoustic Doppler Velocimeter.

Ultimately, using the 3D matrix of the data and criteria ellipse, points laying outside the ellipse are
detected as spikes in all three directions. This algorithm does not have repetition in the implementation of the
algorithm and it is non-iterative, the replacement operation is optional.

2.2. Replacement Techniques

In this research, two important replacement algorithms that are widely used have been investigated
which are Last Good (Valid) Value (LGV) and 12 Points Polynomial (12PP). In the LGV method, the detected
spike is simply replaced with the last valid data point. The advantage of this method is that it does not depend
on subsequent spikes, especially when several consecutive data have been identified as spikes (Jesson et al.,
2013). In such cases, one of the disadvantages of this method is that it creates a flat area in the signal. If this
happens to a large number of identified spikes, the effect on calculating the mean and standard deviation will
be significant (Goring and Nikora, 2002). The use of this alternative method is recommended when using the
PST detection algorithm modified by Parsheh et al. (2010). In the 12PP method, a cubic interpolation is made
between 24 points around the spike (12 data on each side), and the replacement value is calculated. The
vector consisting of 24 side points must be free of spikes. Otherwise, the spikes that have not yet been
removed will affect the replacement and the next loop of the detection algorithm, fully described in Goring and
Nikora (2002).

2.3. ADV Data

Some algorithms (such as Acceleration thresholding) have been suggested to be suitable only for low-
polluted datasets that do not have a complex spike (Goring and Nikora, 2002). Also, some algorithms (such as
KDE) have been suggested to be suitable only for highly-polluted datasets (Islam and Zhu, 2013).
Nevertheless, none of them give a precise definition of pollution. To evaluate the performance of different
algorithms concerning data contamination, 3 types of flow have been collected. In this study, datasets with
pollution rates less than 4~5% are called low-polluted, datasets with pollution rates more than 4~5% and less
than 10~15% are called polluted and datasets with pollution rates above 15% are highly polluted. The rate of
pollution is assumed to be equal to the number of unique spikes detected and replaced, divided by the total
number of data.

In the present study, 5 datasets were examined. For the first datasets used in this experiment, a channel
with a 90-degree arc was used. The central radius of this arch is equal to 1.2 meters and the width of this
channel is equal to 0.6 meters. The floor material of the canal is sand with a diameter of 2.4 mm. The
upstream flow velocity is 35.6 cm/s and the water depth is 11.7 cm. A straight spur dike is located at a 45-
degree angle to the beginning of the arc. An ADV made by Nortek was used to measure the velocity field. At a
sampling frequency of 100 Hz, about 18,000 data were collected upstream in 3 minutes (Referred to as LP-M
in this paper).

The second series of data is obtained in a flume with a cross-section of about 0.25 square meters and an
approximate length of 6 meters. An axial symmetrical jet discharged into the flume by a 1 cm diameter brass
tube was fed by a fixed-head tank 2.8 m above the ground. The Reynolds Jet was set at around 10,000, with
an output velocity of about 1 meter per second. The perimeter of the jet was static fluid. Velocity field
measurements were performed by an ADV manufactured by Nortek. A sampling frequency of 200 Hz was
selected. The data were taken at a distance of 75 cm from the jet outlet and across the channel and on a
plane parallel to the channel floor (Referred to as LP-KH in this paper).
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For the third data, the experimental data of Righetti (2008) was used, which was kindly provided to the
authors. A laboratory flume with 150 m length, 2 m width, 2 m depth, and the bed was used. The walls are
made of concrete and the final part of the flume is finished with an adjustable rectangular overflow. Water
flows through a closed circuit using a group of four pumps, up to a maximum discharge of 1.57 m3/s. The
slope of the channel bed is 0.18%. The downstream part of the flume was uniformly covered with 45 m long
Salix bushes. Data from this channel were collected using a Nortek ADV device and a sampling frequency of
25 was selected (Referred to as P-R in this paper). Full details are provided by Righetti (2008).

The fourth series of data used in this study is related to Devi and Kumar (2016) and was kindly presented
to the authors. This data was collected in a sloping flume with 20 m of length, 1m of width, and 72 cm of depth
in a plant sand bed. A tank with a length of 2.8 meters, a width of 1.5 meters, and a depth of 1.5 meters are
built upstream of the flume to regulate the flow to enter the flume Two data from this channel was collected
(Referred to as Dataset4 in this paper) using a Nortek ADV. A sampling frequency of 200 was selected and
about 24,000 data were collected in 2 minutes (Referred to as HP-K1 and HP-K2 in this paper). Full details
are provided by Devi and Kumar (2016).

In this study, the Cartesian right-handed coordinate system was used. According to this system, the x-
direction is considered to be in the channel path from the channel input, the y-direction from the right wall to
the left wall, and the z-direction in the vertical direction from the channel bed upwards. The four introduced
datasets had different flow conditions and different specifications. Moreover, the rate of their pollution is
different from each other. Table 1 shows the datasets and the estimated pollution by the base method (SSA).

Table1. Estimated pollution of datasets by base method (SSA).

Dataset Pollution Category
LP-M ~2.80% Low Polluted
LP - KH ~1.48% Low Polluted
P -R1 ~7.47% Polluted
P-R2 ~8.88% Polluted
HP — K1 ~16.80% Highly Polluted
HP — K2 ~23.28% Highly Polluted

3. RESULTS

The accuracy of each algorithm is evaluated by the detected spike percentage, power spectrum, and
data normality test. The number of replaced data by each despiking algorithm is compared with the number of
spikes detected by the base filtering algorithm (Singular Spectrum Analysis). In order to study the statistical
properties of turbulence of filtered signals, the power spectrum of turbulence for the whole laboratory data set
was compared with the common properties of the power spectrum of turbulence, which was examined using
the approved law of -5/3. This law has received much attention in the fluid and hydraulic mechanics
community in recent decades and is the basis of many turbulent flow models (Lewandowski and Pinier, 2016),
also known as Kolmogorov’s law. Kolmogorov's law states that in some limits of inertia, the energy density of
the flow E(k) behaves like ct®k~5/3, where k represents the number of flow waves (Lewandowski and Pinier,
2016). According to the central limit theorem, a dataset with a large number of members must have a normal
distribution (Ross, 2017). For a dataset with a perfect normal distribution, the amount of skewness is 0. If

Pearson's law is used, the value of kurtosis is ideally 3. The skewness is equal to the third momentum of the
—15

normalized data (E/u’2 ) and is, in fact, a measure of the degree of symmetry of the distribution function.

_ 2
kurtosis is equal to the fourth momentum of the normalized data (u"*/u'2 ), in other words, kurtosis is a
measure of the sharpness of the curve at the maximum point (Tennekes and Lumley,1972). Also, for a more
detailed study of the importance of despiking, higher moments have been calculated and examined.

In low-polluted datasets (pollution less than 4~5%), no significant change is expected in the power
spectra. In fact, unfiltered data must also follow Kolmogorov's -5/3 rule. As may be seen in Figure 2, the
power spectrum of each low-pollution dataset follows Kolmogorov's -5/3 rule before despiking, and as
expected, there is no noticeable difference between the spectrum of filtered and unfiltered data.
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Figure 2. a) Power spectra for dataset LP-M, b) Power spectra for dataset LP-KH.

Table 2 contains the calculated higher momentum of the dataset LP-M and LP-KH normality test.
According to the results, the PST-LGV algorithm has unacceptable results in both datasets. Also, the PST-
LGV despiking algorithm was still finding spikes after many iterations and has identified a lot of valid data as
spikes. The skewness of the filtered data using the PST-LGV despiking algorithm is very close to the ideal
value, especially in the LP-M dataset. However, due to the large number of suitable data which are identified
as spikes by this algorithm, these results cannot be reliable. 12pp replacement method leaded better results
for the PST algorithm. The number of spikes detected by this algorithm is close to the pollution estimated by
the base algorithm. Also, the skewness of the filtered data with the PST-12PP algorithm provides better and
more reliable values than PST-LGV. The results of the VCF algorithm showed that the replacement algorithm
has a low effect on the despiking operation and that the skewness and kurtosis values are close to the ideal
values. According to the results of the normality test of filtered data using the VCF detection algorithm, the
LGV replacement method has a slight advantage over the 12PP method. Also, the filtration speed is higher.
Since the KDE algorithm is non-iterative, it is obvious that the amount of pollution is the same with each
replacement algorithm. Also, the amount of skewness and kurtosis of the replaced data are very close to each
other in both algorithms. As mentioned by Islam and Zhu (2013), this algorithm has not performed well in low-
polluted datasets and has identified a lot of valid data as spikes. The best skewness test results are related to
the KDE detection algorithm. However, these results are not reliable due to the identification of a large number
of suitable data as spikes.

Table 2. Mean longitudinal flow velocity, standard deviation, skewness, kurtosis, and pollution of dataset LP-M

and LP-KH.
Mean (cm/s) Standard Dev. Skewness Kurtosis Pollution
Main 7.46 5.60 -0.20 3.49 -
PST-LGV 7.49 5.79 -0.01 3.64 10.77 %
= PST-12PP 7.47 5.55 -0.20 3.25 2.09 %
a VCF-LGV 7.46 5.57 -0.16 3.26 0.26 %
- VCF-12PP 7.47 5.57 -0.17 3.29 0.26 %
KDE-LGV 7.46 5.46 -0.13 2.89 8.42 %
KDE-12PP 7.43 5.42 -0.18 2.89 8.42 %
Main 6.96 2.27 0.06 3.03 -
PST-LGV 6.97 2.35 0.07 3.15 6.9 %
PST-12PP 6.96 2.26 0.09 2.85 1.49 %
§ VCF-LGV 6.96 2.27 0.07 2.95 0.07 %
5' VCF-12PP 6.96 2.27 0.07 2.93 0.07 %
KDE-LGV 6.95 2.22 0.03 2.62 7.64 %
KDE-12PP 6.96 2.22 0.03 2.59 7.64 %

Figure 3 shows the detected spikes by PST-LGV and KDE-LGV despiking algorithms for the LP-M
dataset’s longitudinal flow velocities. It may be seen that these two methods have identified many suitable
data as spikes. The results also show that the mean longitudinal flow velocities in all filtered and unfiltered
data are almost the same. In general, it can be said that the best performance in the low-polluted datasets
was related to the PST-12PP algorithm. Although the PST detection algorithm yielded the best filtration result,
studies show that the final results of this algorithm are strongly influenced by the selective replacement
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method. The results also showed that by selecting a suitable replacement method for this algorithm, the
correct spikes can be identified.
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Figure 3. a) Longitudinal flow velocities and detected spikes by PST-LGV in dataset LP-M,
b) Longitudinal flow velocities and detected spikes by KDE-LGV in dataset LP-M

Table 3 contains the second and third-order moments of the raw and filtered data by the PST-12PP
method (superior algorithm) for low-polluted datasets. The second-order moment of dataset LP-M has
decreased by 0.54%. Also, the third-order moment of this dataset has decreased by about 0.95%. The second
and third-order moments for dataset LP-KH decreased by only 0.07% and 0.13%, respectively. Considering
that the percentage of moments changes in these two datasets is very small, in general, it can be said that the
issue of filtering in these datasets is not very important.

Table 3. Second and third order of moments of main and filtered data, for low-polluted datasets.

Dataset Moment Second-order Third-order
LP-M Maln 87.00 1081.49
Filtered 86.53 1071.26
Main 53.62 445.83
LP-KH Filtered 53.58 44525

In polluted datasets (pollution more than 4~5% and less than 15%), the main data spectrum was
expected not to follow Kolmogorov’s -5/3 rule. Figure 4 shows the power spectrum of unfiltered and filtered
data for both polluted datasets (dataset 3-1 and dataset 3-2). It is clear that the power spectrum of the original
data does not follow Kolmogorov's rule as expected. However, the power spectrum of filtered data using all
algorithms more or less follows Kolmogorov's law.
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Figure 4. a) Power spectra for dataset P-R1, b) Power spectra for dataset P-R2.
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Figure 5 shows the longitudinal velocity time-series signal for the dataset P-R2 before despiking. It may
be seen that this dataset can challenge the intelligence of any algorithm. In the trend of this dataset, the data
fluctuates in a certain range. This part of the data was examined separately, which can be said to have very
few spikes. After about 120 seconds, sharp fluctuations appear in the speed time-series signal.

—— Unfiltered
1001
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—100+

40 60 80 100 120 140 160 180 200
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Figure 5. Longitudinal velocity time-series signal for dataset P-R2.

The results of the normality test of the P-R1 and P-R2 datasets are shown in Table 4. In both datasets, it
was observed that the mean longitudinal velocities for the raw and filtered data are almost close to each other.
In these types of datasets, the PST-LGV algorithm performed better than in the previous type of datasets (low-
polluted datasets). The skewness and kurtosis test of the data filtered using this method is close to the ideal
values. Also, the number of spikes identified by this method is close to the number of spikes identified by the
base method. In these datasets, the PST-12PP algorithm detected fewer spikes than the PST-LGV algorithm,
similar to low-pollution datasets. According to the results, it can be said that the replacement method had a
great effect on the filtering operation with the PST algorithm. However, the replacement method had less
effect on the VCF and KDE detection algorithms. The VCF detects fewer spikes than other algorithms. This
algorithm also did not show acceptable results in the kurtosis test, especially in the second dataset. In the
second dataset, the kurtosis value of the filtered data with the VCF-12PP algorithm was 4.34. However, the
skewness value of this data was 0.07, which is a very acceptable number. The performance of the KDE
algorithm has improved due to the increase in data pollution. Both replacement methods had relatively
acceptable results with the KDE detection algorithm. The normality test of the filtered data by the KDE method
also had acceptable results. It can be said that the KDE-LGV algorithm had the best results in the kurtosis test
with PST-LGV. According to the results, PST-LGV, PST-12PP, and KDE-LGV algorithms have acceptable
performance in polluted datasets. However, the PST algorithm can be strictly selected as the superior
algorithm with a slight superiority. The PST-12PP algorithm was also selected as the superior algorithm for
this series of datasets due to the more accurate detection of spikes by the PST-12PP algorithm and the slight
difference in the normality test.

Table 4. Mean longitudinal flow velocity, standard deviation, skewness, kurtosis, and pollution of dataset

P-R1 and P-R2.
Mean (cm/s) Standard Dev. Skewness Kurtosis Pollution
Main 7.70 10.39 -1.08 54.11 -
PST-LGV 7.99 4.71 -0.09 3.32 11.57 %
- PST-12PP 8.06 5.17 -0.12 4.1 10.34 %
o VCF-LGV 8.11 5.02 0.14 4.05 6.35 %
o VCF-12PP 8.10 5.24 0.07 4.34 5.95 %
KDE-LGV 8.16 4.74 0.15 3.51 11.41 %
KDE-12PP 8.16 4.91 0.15 3.80 11.41 %
Main 53.10 12.29 -4.74 37.56 -
PST-LGV 54.80 6.48 -0.24 3.04 9.1 %
~ PST-12PP 54.65 6.61 -0.23 3.17 8.19 %
ox VCF-LGV 54.65 6.74 -0.3 3.27 2.66 %
o VCF-12PP 54.63 6.68 -0.28 3.19 2.66 %
KDE-LGV 54.73 6.56 -0.21 3.01 10.41 %
KDE-12PP 54.62 6.62 -0.3 3.28 10.41 %
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The performance of the new algorithm in this dataset was also examined in detail. This algorithm was
also able to clear the entire signal from the spikes as well as the KDE method. The filtered signal had a
normal distribution and the values of skewness and elongation were very close to the ideal values. Figure 6
shows the main and filtered signal of dataset obtained by Righetti (2008) (Figure 6-a) and Devi and Kumar
(2016) (Figure 6-b), using 3dKDE despiking method. It is quite obvious that the introduced method was able to
pinpoint the true signal consummately and annihilate the spikes from it.

150
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50 50

2 2
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N 0 NS 0
= =
-50 -50
—~100{ —— Main Data —— Main Data
—— 3D Kernel —1001 —— 3D Kernel
0 50 100 150 200 0 50 100 150 200
t(s) t(s)

(a) (b)
Figure 6. Time-series longitudinal velocity of unfiltered and filtered signal using 3dKDE despiking method,
a) Righetti (2008), b) Devi and Kumar (2016).

4. CONCLUSIONS

In the present paper, a new velocity data despiking software package has been introduced and the
accuracy of different techniques has been discussed. The decoction technique is composed of PST, VCF,
KDE and 3D-fastKDE, while the replacement techniques are LGV and 12PP. The main observations in this
study are:

e Generally, it is found that an appropriate filtering method depends on the level of spikes presence.

e For the low polluted signals (less than 4~5% of the data are spikes), the PST algorithm detects the
spikes better than other spike detections methods. The results also show that in this type of signals,
the replacement method does make a drastic impact. The LGV replacement method had too bad
results and the 12PP method had too good results.

e For the polluted signals (more than 4~5% and less than 10~15% of the data are spikes), the best
filtering results have been obtained using PST as detection and 12PP as a replacement method.

e For highly polluted signals (more than 15% of the data are spikes), our results show that most of the
detection available algorithms do not properly work. However, the best results were obtained using
KDE as a detection method and 12PP as a replacement method.

e The 3D-fastKDE also shows high detection accuracy in low moderate and highly polluted data.
Considering this fact, application of this algorithm in laboratory and field measurements has been
suggested.

e The observation in this study is essential as a guideline for most of the laboratory and river velocity
and turbulence measurement using ADV in the data preparation step.
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