PROCEEDINGS



Publisher: IAHR

Editor: Miguel Ortega-Sánchez

ISSN: 2521-716X (Online)
ISSN: 2521-7119 (Print)
ISSN: 2521-7127 (USB)
ISBN/EAN: 978-90-832612-1-8

Theme 6. Computational and experimental methods


Theme 6.6. Artificial intelligence in hydro-environment engineering  

06-06-001-127

Insights into fish-anthropogenic pressures relationships using machine learning techniques: the case of castilla-la mancha (Spain)
Carlotta Valerio, Graciela Gómez Nicola, Rocío Aránzazu Baquero Noriega, Alberto Garrido 4, Lucia De Stefano

06-06-002-405

Pattern analysis of meteorological field causing heavy rainfall disaster in kyushu and chugoku region japan using self organizing map
Koji Asai, Koji Nishiyama, Hajime Shirozu

06-06-003-697

Physics-informed machine learning for pollutant transport modelling in surface water
Daan Bertels, Patrick Willems

06-06-004-902

Coupling support vector machine and physically-based hydrological modeling for reducing the computational time in climate change studies.
Florentin Hofmeister, Alice Spadina, Gabriele Chiogna

06-06-005-903

Application of machine learning techniques to optimize water disinfection through advanced oxidation processes
Sonia Guerra-Rodríguez, David J. Vicente, Jorge Rodríguez-Chueca, Alejandro Pérez-Aja, Encarnación Rodríguez, Fernando Salazar

06-06-006-926

A reliable monitoring approach of floods in small and high slope watersheds
Goncalo Jesus, Anabela Oliveira, Joao Rogeiro, Rui Rodrigues, Joao Fernandes

06-06-007-952

Assessment of random forest to predict sediment first flush in urban watersheds
Cosimo Russo, Alberto Castro, Angela Gorgoglione

06-06-008-1003

Obtaining Riparian Vegetation Characteristics from UAV Optical Imagery 3D Point Cloud Data
Andre Araujo Fortes, Masakazu Hashimoto, Keiko Udo, Ken Ichikawa, Shosuke Sato

06-06-009-1036

A machine learning based method for fast estimation of damages due to failure of off-stream reservoirs
Nathalia Silva Cancino, Fernando Salazar, Marcos Sanz-Ramos, Ernest Bladé Institute FLUMEN and 

06-06-010-1040

Model tree-based approaches for forecasting hydroclimatic variables at different temporal scales
Ramesh Teegavarapu, Alexis Schauer, Priyank Sharma

06-06-011-1308

Modelling flash floods in ungauged mountainous catchments in henan province, china: a machine learning approach for parameter regionalization
Sijia Hao, Qiang Ma, Philippe Gourbesville, Guomin Lyu, Wenchuan Wang, Changjun Liu

06-06-012-1418

Assessment of long-term heavy metal contamination in aquatic ecosystems using a combination of secondary data analysis techniques
Basmah Bushra, Leyla Bazneh, Lipika Deka, Paul Wood, Diganta Das

06-06-013-1428

Regional models based on multi-gene genetic programming for the simulation of monthly runoff series
Dario Pumo, Giuseppe Cipolla, Leonardo V. Noto

06-06-014-1538

Data-driven models for flooding forecasting in small watersheds
Sergio Zubelzu, Sara E. Matendo, Victor Galán

06-06-015-1724

Exploring the impact of coastal water quality parameters on chlorophyll-a near cyprus with the use of artificial neural networks
Ekaterini Hadjisolomou, Konstantinos Antoniadis, Ioannis Thasitis, Rana Abu-Alhaija associate, Herodotos Herodotou, Michalis Michaelides

06-06-016-1774

Assessment of the short-term streamflow forecasting using machine learning fed by deutscher wetterdienst icon climate forecasting model
Andrea Menapace, Daniele Dalla Torre, Ariele Zanfei, Pranav Dhawan, Michele Larcher, Maurizio Righetti

06-06-017-1804

Machine learning approaches for practical water resources management: a real and consistent tool or an appealing distraction?
Claudio Mineo, Stefania Passaretti, Eleonora Boscariol, Anna Varriale